CAREER COLLEGE BHOPAL

Session 2022-23

Subject: Introduction to Networking Protocols and Architecture

Submitted By: Ms. Shazia Sultan
Assistant Professor
(Department of Computer Science)

Overview

- Data Comm vs Networking vs Distributed Systems
- Types of Networks
- Protocol Layers: OSI and TCP/IP Models
- Connection-oriented vs connectionless
- Layered packet format

Data Communication vs Networking

□ Communication: Two Nodes. Mostly EE issues.

■ Networking: Two or more nodes. More issues, e.g., routing

Distributed Systems vs Networks

- □ Distributed Systems:
 - □ Users are unaware of underlying structure.
 - E.g., trn instead of \n\bone\0\trn
 - □ Mostly operating systems issues.
 - □ Nodes are generally under one organization's control.
- □ Networks: Users specify the location of resources.

Types of Networks

Point to point vs Broadcast

Circuit switched vs packet switched

■ Local Area Networks (LAN) 0-2 km,
 Metropolitan Area Networks (MAN) 2-50 km,
 Wide Area Networks (WAN) 50+ km

Protocol Layers

□ Problem: Philosophers in different countries speak different languages. The Telex system works only with English. ☐ believe there is a God!

Philosopher

Translator

Secretary

Design Issues for Layers

- □ Duplexity:
 - □ Simplex: Transmit or receive

- □ Full Duplex: Transmit and receive simultaneously
- □ Half-Duplex: Transmit and receive alternately
- Error Control: Error detection and recovery
- □ Flow Control: Fast sender

ISO/OSI Reference Model

File transfer, Email, Remote Login ASCII Text, Sound Establish/manage connection End-to-end communication: TCP Routing, Addressing: IP Two party communication: Ethernet

How to transmit signal: Coding

Layering

FTP	Telnet		Web	Email		
Trans Control Prot			User Datagram Prot			
Internet Protocol			Novell Netware (IPX)			
Ethernet			Token Ring			
Copper			Fiber			

√—Same
Interfaces

- □ Protocols of a layer perform a similar set of functions
- □ All alternatives for a row have the same interfaces
- □ Choice of protocols at a layer is independent of those of at other layers. E.g., IP over Ethernet or token ring
- Need one component of each layer ⇒ Null components

Interfaces and Services

PDU Header SDU

- □ IDU = Interface Data Unit = ICI + SDU
- □ ICI = Interface Control Information
- □ SDU = Service Data Unit
- □ PDU = Protocol Data Unit = Fragments of SDU + Header or Several SDUs + Header (blocking)
- □ SAP = Service Access Point

Protocol Data Unit (PDU)

Service Data Unit (SDU)

Connection-Oriented vs Connectionless

- Connection-Oriented: Telephone System
 - □ Path setup before data is sent
 - □ Data need not have address. Circuit number is used.
 - □ Virtual circuits: Multiple circuits on one wire.
- Connectionless: Postal System. Also known as datagram.
 - □ Complete address on each packet
 - □ The address decides the next hop at each routing point

Types of Services

Connection-oriented Datagram

Reliable Unreliable Reliable Unreliable

Message Byte Acknowledged Request-Reply
Sequence Stream

- Byte streams: user message boundaries are not preserved
- Request-reply: The reply serves as an acknowledgement also
- Message oriented or byte oriented approach can be used for unreliable connection-oriented communication

Service Primitives

□ Indication = Interrupt

1. Request

3. Response

2. Indication

4. Confirm

Unconfirmed service: No confirmation or response

TCP/IP Reference Model

- □ TCP = Transport Control Protocol
- □ IP = Internet Protocol (Routing)

TCP/IP Ref Model TCP/IP Protocols OSI Ref Model

Amaliantian		E'TD	Taln	~ 4	НТТР		Application
Application		FTP	Teme	2 1			Presentation
Tuonanan		TCP			HIDD		Session
Transport					UDP		Transport
Internetwork		IP					Network
Host to Network	Ether	Packet	Po	Point-to-		Datalink	
		net]	Radio	Point		Physical	

OSI vs TCP Reference Models

- □ OSI introduced concept of services, interface, protocols. These were force-fitted to TCP later
 - \Rightarrow It is not easy to replace protocols in TCP.
- □ In OSI, reference model was done before protocols. In TCP, protocols were done before the model
- OSI: Standardize first, build later TCP: Build first, standardize later
- □ OSI took too long to standardize. TCP/IP was already in wide use by the time.
- □ OSI become too complex.
- □ TCP/IP is not general. Ad hoc.

Layered Packet Format

■ Nth layer control info is passed as N-1th layer data.

IP
HeaderFTP DataIP
HeaderIP Data

Ethernet Header

Ethernet Data

Ethernet Trailer

- Communication, Networks, and Distributed systems
- ISO/OSI's 7-layer reference model
- □ TCP/IP has a 4-layer model
- PDU, SAP, Request, Indication

Thank You